عدد الرؤوس في الهرم الرباعي هرم رباعي منتظم
عدد الرؤوس في الهرم الرباعي : مقال جديد في عالم الرياضيات لطلاب وطالبات المراحل الدراسي ومن خلال مقالنا اليوم سوف نتعرف على معلومات قيمة حول التعرف على الرؤوس الرباعية في الهرم لطلاب الهندسة تحديداً والتعرف على القيم والمعلومات التي سوف نتعرف عليها من خلال الصفحة العربية https://artic.arabpage.net
متابعينا وطلابنا الأعزاء وكذلك المهندسين في الهندسة المعمارية والمدنية سوف نتعرف على بعض المصطلحات في هذا الدرس البسيط حول كم عدد الرؤوس في الهرم والمتعارف عليه الرباعي وليس الثلاثي. https://artic.arabpage.net/?p=126921
ماهو عدد الرؤوس في الهرم الرباعي
…
هرم (هندسة)
هرم | |
---|---|
الوجوه | n مثلثات، 1 n-مضلع |
الأضلاع | 2n |
الرؤوس | n + 1 |
رمز وايثوف | |
والهرم المكون من قاعدة ذات عدد (n) من الأضلاع سيكون له عدد (n+1) من الرؤوس، وعدد (n+1) من الوجوه، وعدد (2n) من الحواف. جميع الأهرامات هي مجسمات ذاتية التبادل.
إذا كانت قاعدة الهرم هي مضلع منتظم وقمتة تقع مباشرة فوق مركز المضلع، فالهرم ذو عدد (n)-سطوح سيكون له تماثل Cnv.
إذا كانت حواف الهرم (أو أي شكل محدب متعدد السطوح) مماسة لسطح كرة بحيث يقع متوسط نقاط التماس عند مركز الكرة، يطلق عليه الهرم المعياري أو التقليدى، وهو يشكل نصف متعدد السطوح المبادل للمكعب.
كم عدد رؤوس الهرم الرباعي
الإجابة على هذا السؤال حيث ان عدد الرؤوس هي خمسة رؤوس، حيث أن الهرم الرباعي من المضلعات الهندسية التي تحتوي على خمسة أوجه، وتكون أربعة منها مثلثة الشكل كما هو متعارف لدى الكثيرون، وأما الوجه الخامس هو القاعدة وتكون مربعة الشكل، ويحتوي الهرم الرباعي على خمس زوايا، وثماني أضلاع.
وتكون الإهرامات ذات الوجوه المنتظمة الهرم الثلاثي أو المثلث الذي تكون قاعدته ووجوهه الجانبية الثلاثة هي عبارة عن مثلث متساوي الأضلاع يصبح رباعي الوجوه المنتظم (بالإنجليزية: regular tetrahedron)، وهو أحد المجسمات الأفلاطونية. أما حالة التماثل الأدنى للهرم الثلاثي – وهي C3v – فتكون فيها قاعدته عبارة عن مثلث متساوي الأضلاع، وغلافة الجانبى مكون من 3 مثلثات متساوية الساقين ومتطابقة.
ويمكن أيضاً للأهرامات المربعة والخماسية أن تتألف من وجوه جانبية منتظمه (ذات شكل مضلع منتظم محدب)، وفي هذه الحالة تندرج تحت تعريف مجسمات جونسون.((wikipedia الهرم الهندسي تاريخ تحديث الرابط 7 فبراير 2021))
مثال: أحسب حجم الهرم الرباعي الناقص حيث إن طول ضلع القاعدة 4 سم وارتفاع الهرم 10 سم؟
الحل هو:
- مساحة القاعدة المربعة= 2× طول الضلع
- مساحة القاعدة= 2× 4
- مساحة القاعدة= 8 سم
- مربع حجم الهرم= ⅓× 8× 10
- حجم الهرم= 26.67 سم
كيفية حساب أوجه الهرم
يمكن بسهولة معرفة رياضيات الهرم بالطريقة التالية:
- عدد أوجه الهرم = عدد أضلاع قاعدته + 1.
- عدد رؤوس الهرم = عدد رؤوس قاعدته + 1.
- عدد حواف الهرم = عدد أضلاع قاعدته × 2.